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ABSTRACT 

A combination of computational fluid dynamic analysis and analytical solutions is being 
used to characterize the dominant modes in liquid rocket engines in conjunction with laboratory 
experiments. The analytical solutions are based on simplified geometries and flow conditions and 
are used for careful validation of the numerical formulation. The validated computational model is 
then extended to realistic geometries and flow conditions to test the effects of various parameters 
on chamber modes, to guide and interpret companion laboratory experiments in simplified 
combustors, and to scale the measurements to engine operating conditions. In turn, the 
experiments are used to validate and improve the model. The present paper gives an overview 
of the numerical and analytical techniques along with comparisons illustrating the accuracy of the 
computations as a function of grid resolution. A representative parametric study of the effect of 
combustor mean flow Mach number and combustor aspect ratio on the chamber modes is then 
presented for both transverse and longitudinal modes. The results show that nigher mean fiOv\i 

Mach numbers drive the modes to lower frequencies. Estimates of transverse wave mechanics 
in a high aspect ratio combustor are then contrasted with longitudinal modes in a long and narrow 
combustor to provide understanding of potential experimental simulations. 

INTRODUCTION 

Combustion instability has plagued many liquid rocket engine development programs. Its 
impact can range from minor ‘rough’ burning incidents to highly catastrophic events. The most 
dominant characteristic of combustion instability is ts unpredictability. A given test program can 
proceed smoothly with no indication of difficulty and then suddenly encounter an instability 
incident. The incident may be triggered by a scale-up to a new combustor size, a small change in 
design, or even something as minor as a change in the fuel temperature. Unequivocal means for 
establishing that a given design will not encounter difficulty do not exist. It is perhaps even more 
difficult to demonstrate that the mechanisms that have previously caused an engine to encounter 
difficulty have been effectively mitigated. The ethereal nature of instability is perhaps best noted 
by indicating that for years the SSME engine flew with baffles in the chamber even though it now 
appears they were never needed. 

The tendency toward instability is strongly affected by the injector element and the fuel. 
Historically hydrocarbon engines have proven to be much more susceptible to instability than 
hydrogen engines, however, the reason for this susceptibility must be considered carefully. Most 
hydrocarbon engines in the US have employed impinging injectors while cryogenic engines have 
typically used cc-axial elements. Consequently it is important to ascertain whether the 
susceptibility to unstable combustion arose from the hydrocarbon fuel or the impinging element. 
Current preference for hydrocarbon engines is to move from impinging elements to swirling coax 
elements (often with recess) thereby placing our historical database in question. How applicable 
is the existing tydrocarbon/impinging element data base to these radically different injector 
types? Further, current interest in cryogenic engines raises the possibility of injecting liquid rather 
than gaseous hydrogen. This raises the corresponding question: Is hydrocarbon fuel more prone 
to instability than is hydrogen, or is the liquid phase more prone than gaseous fuels? Clearly, 
there are many important issues to be addressed in dealing with combustion instability. 

The present paper describes the analytical portion of an on-going study on combustion 
instability that closely couples detailed modeling with laboratory-scale experiments. The goal is 
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to combine the recent dramatic advances in experimental diagnostics with the equally dramatic 
advances in computational capabilities to provide improved understanding of combustion 
instability. Emphases are on documenting combustor environments and developing improved 
modeling tools (modeling here covers both scale-model experiments and computation). The 
experimental components of the study are discussed elsewhere [1,2]. The focus of the paper is 
on assessing the effects of flowfield variables on the acoustic modes of chambers with emphasis 
on two possible experimental configurations, one designed to generate longitudinal disturbances 
and the other for transverse disturbances. The goals are to ascertain the response of the injector 
to forced disturbances of both types of waves as means of characterizing their suitability for 
stable combustion. 

RESULTS AND DISCUSSION 

Detailed computational simulations are very promising for studying combustion instability 
because they provide complete detail on mode shapes and amplitudes and allow complete 
nonlinear effects to be simulated. There are, however, two primary shortcomings Of 
computational simulations. First, each simulation provides stability information at only one 
condition so that many hundreds of calculations are needed to map out a stability diagram. 
Second, the numerical simulations must be validated to assess their accuracy. While 
experimental results are crucjal for validating steady state computations, they become less so for 
iinsteady phenomena because it is so difficult to provide the massive quantities of data needed at 
the accuracy levels required to truly validate a code. For both of these reasons, we Supplement 
our computational solutions by means of a linearized analytical model of the flow in a chamber. 
To keep the analysis simple, we use simple geometries and simple physics in the analytical 
model. The closed-form solutions then provide an effective overview of the topography Of 
instability zones, while also providing very precise results against which the computations can be 
verified. After ascertaining that the numerical simulations are providing an accurate Solution to 
the model that has been posed, experimental results are required to validate the quality of the 
model itself. In addition, the computational simulations allow us to build upon the basic 
framework set up by the analytical model to incorporate additional geometrical complexities, more 
complex physical submodels and effects of large amplitude waves and nonlinearities. 

In the following subsection+, we begin by summarizing the computational model and the 
analytical model. Following this we present a series of results showing the effects of mean flow 
Mach number on the amplitude of forced disturbances and the effect of different upstream 
boundary conditions. 

COMPUTATIONAL MODEL 

The computational solutions are obtained with our in-house GEMS (General Equation 
and Mesh Solver) code [2-51. GEMS uses a dual time scheme for time-accurate results such as 
the present one. This formulation is chosen because it is not only more efficient, but can also be 
more accurate for a wide range of flow speeds. The formulation uses a generalized unstructured 
grid method with second-order-flux split upwinding for the convective terms and Galerkin's 
method for diffusive terms. Although the code has capability for complete reaction kinetics, the 
present results represent solutions of the inviscid Euler equations for a perfect gas with constant 
specific heats. The mean flow Mach numbers in the present results range from 0.05 to 0.5, with 
the lower Mach numbers being representative of the planned laboratory-scale experiments [I ,2], 
while the higher Mach numbers are representative of full-scale rocket engine Operating 
conditions. Analysis of unsteady computations shows that it is necessary to add preconditioning 
to the upwinded discretization used in the dual time to prevent the solution from being swamped 
by excess artificial dissipation at these very low Mach numbers [4,5]. For this reason, the present 
calculations were all carried out with preconditioning. The present solutions are formally Second- 
order accurate in time and space 

ANALYTICAL MODEL 



As indicated above a closed-form analytical solution is used to map the topography of the 
stability plane and discern the characteristics of the various mode shapes. In addition, these 
analytical solutions serve as the first validation step for the computational simulations. Analytical 
solutions ailow comparison of compieie mode shapes, amplitudes and phases, providing a highly 
,effective check of the solutions. Because the primary purposes of the analytical solution are for 
understanding global effects and for validating detailed portions of the computations, closed-form 
solutions need only be obtained for simple geometries and need only incorporate simple physics. 
The computational solution can then be used to extend the analytical findings to more complex 
domains and more complicated physics. It is, however, necessary that the analytical solution be 
formulated for boundary conditions that are identical to those that will be used in the numerical 
simulations (to ensure that the boundary conditions are validated along with the global 
formulation) and that it be identical to the numerical solution in other aspects as well. 

The closed-form solution is obtained from a frequencydomain analysis of the linearized 
Euler equations the gives the acoustic modes in a chamber that has inflow and outflow at the 
upstream and downstream boundaries. The left-most geometry in Fig. 1 shows a representative 
geometry for the analytical solution while the two on the right show geometries of interest for the 
computational simulations. In this figure, the flow goes from left to right, and the goal is to assess 
transverse disturbances in a chamber with mean flow. Using a constant area passage with a 
constant mean Mach number simplifies the analytical solution while still providing a global 
understanding of the unsteady flow characterisitcs. The remaining two plots in Fig. 1 show 
geometries that were computed with the numerical model to incorporate the effects of finite length 
nozzles with multiple exit ports to simulate a possible experimental configuration. Analytical 
solutions with long chambers that support longitudinal modes (Fig.2) have also been computed 
as discussed below. 
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Figure 1. Geometry for analytical solution and computational validation (left) and multiple 
nozzle numerical simulations (center and right). Transverse mode analyses. I 

Perturbations in a constant-area duct with a uniform mean flow are easily solved 
analytically. For our formulation, we have specified boundary condition forcing at the upstream 
end or the downstream end. Bcundarj conditicn pairs at the upstream end are either the 
stagnation temperature and stagnation pressure or the mass flow and stagnation pressure. In 
both cases, the vvelocity component is set to zero. At the downstream boundary, the static 
pressure is specified. Boundary conditions at either end can be specified as constant or an 
arbitrary function of cross-stream distance and time (expressed as a Fourier series) to see the 
response to forcing. Results given below refer to both upstream and downstream forcing. 



MEAN FLOW MACH NUMBER EFFECTS-LONGITUDINAL COMBUSTOR 

As a first example we aonsider a chamber that is designed to support longitudinal 
oscillations [2] and driven by a pressure oscillation at the downstream end. The generic 
geometry, which is intended to represent a uni-element combustor, is shown in Fig. 2. The 
combustor has a diameter of two inches and a length of six inches followed by a two-inch nozzle. 
In the projected experiment [2] the combustor length would be variable, but here we characterize 
only a fixed tube length. Downstream forcing would be accomplished experimentally by a siren- 
like device. For the analytical solutions which are based on a constant area duct, we use a duct 
length of eight inches to replace the nozzle. Companion numerical simulations were also done 
for this same constant area geometry. The chamber conditions are specified as 65 atm and 31 00 
K,  chosen to approximately match an RP-lloxygen propellant combination. At these conditions 
the first longitudinal mode in the eight inch duct is approximately 3000 Hz. 

As noted above, the analytical solutions were obtained in the frequency domain. For a 
given Set of conditions, the frequency response was obtained by computing the pressure variation 
at the head end to a series of sinusoidally varying pressures at the downstream end. The results 
are then presented as the ratio of the peak pressure at the head end divided by the amplitude of 
the downstream forcing function. For these longitudinal mode studies, the pressure forcing at the 
downstream boundary was accomplished by pure mode oscillations with uniform pressures 
across the area (oscillation in time only). By contrast with the frequency domain results for the 
ariaiyiicai Suiuiiori, i he  iiijfieiical iesi;l:s v s i e  ob:aified by ma:chiog j: !imp w h i ! ~  fnrcing at a 
given frequency. The time-domain solutions equired an initial transient period for the initial 
condition (uniform flow without perturbation) to die down. The stationary oscillations were then 
measured from temporal osciiiations after this transient was completed. The results are again 
reported as the ratio of the amplitude of the head-end oscillation to the amplitude of the forcing 
function. The goals of this initial set of results are to compare the analytical solutions with the 
computational simulations with the dual goal of understanding the mysics and assessing the 
accuracy of the computations. For this longitudinal oscillation both the numerical and the 
analytical solutions were onedimensional in character. Nevertheless the numerical solutions 
were obtained with the axisymmetric code using a coarse grid in the radial direction. 
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Figure 2. Longitudinal mode 
=n geometries Left. Inverted 

gE nozzle with area ratio = 0 4, 
' -8  Middle Inverted nozzle with - area ratio = 0 1; Right. 

'-, Conventional nozzle with area 

1: ratio = o 4 

Y Y" 

Left Half of Plots Pressure 
Right Half. Mach Number 

As a parameter in this first set of solutions, we consider four different combustor mean 
flow Mach numbers, M= 0.05, 0.7, 0.3 and 0.5. Typical mean flow Mach numbers in full-scale 
engines are typically xound 0.3, whereas packaging constraints along with a desire for optical 
access drives uni-eiement combustors to substantially lower Mach numbers. One of the goals Of 
this series of results is to document the role of the mean flow Mach number on the amplification 
characteristics of disturbances, while another is to identify scaling issues between uni-element full 
scale testing. In combination with the transverse mode simulations given below, the present 
longitudinal oscillations are intended as a calibration of the sensitivity of a given injector element 
to transverse disturbances. 
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Figure 3. Time history of pressure at a point-numerical simulation. Left: M 
= -.-5,' Right: M = 0.5. 

AS an initial indication of the effects of the mean flow Mach number on the solutions, we 
present in Fig. 3. the time-history of the pressure oscillations at one point in the computational 
domain for two different mean flow Mach numbers. The plot on the left of Fig. 3 corresponds to a 
Mach number of 0.05, while the plot on the right shows the pressuretime history for an M = 0.5 

lower Mach number condition where a stationary oscillation in not quite reached after 0.01 
seconds. By contrast, the plot on the right shows that the oscillation has become stationary after 
approximately 0.0075 seconds. (Note that the time span of the plot on :he left is twice !hat on !he 
right.) The time to steady state is therefore approximately inversely proportional to the mean flow 
Mach number. The reason is that the flow in the combustor must be completely convected out 
the downstream boundary before the oscillation can become stable (despite the fact that the 
oscillation is small enough to be linear). Second, note that the amplitude of the plot on the left is 
approximately three times a; large as that on the right (note scale change). This is a general 
observation that as the flow Mach number decreases, the magnitude of the pressure gain at the 
upstream end is increased. In addition the frequency is decreased substantially as noted below. 

The effect of Mach number on both the amplitude and resonant frequency of the 
disturbance is more readily seen from the four plots in Fig.4 which show the normalized pressure 
at the head end resulting from forcing at the down stream end for the four Mach numbers listed 
above. The plot at the upper left corresponds to a mean flow Mach number of 0.05, while that at 
the upper right is M =  0.1, the lower left is for M = 0.3 and the lower right for M 0.5. These plots 
contain both computational and analytical results. The computational results are obtained from a 
sequence of numerical solutions like those shown in Fig. 3. The analytical results represent a 
standard frequency-domain analysis. A quick comparison of the numerical and analytical results 
in all four plots shows that the numerical results are in excellent agreement with the exact 
solutions. Additional detail on grid resolution is given later. 

In addition to demonstrating the accuracy of the numerical results, the results in Fig. 4 
also demonstrate the effect of mean flow Mach number on the pressure response. Both the 
pressure scale and the frequency scale are identical in all four plots so the relative magnitudes 
and frequencies can be obtained by visually comparing the heights of the frequency response. 
The pressure amplitude decreases continuously from M = 0.05 to M = 0.5 with a total reduction in 
amplitude of nearly an order of magnitude. This implies that an important scaling from uni- 
element tests to full scale combustors will occur through the Mach number. Since (as noted 
above) unielement tests typically have lower mean flow Mach numbers than iull-scak 
combustors, the pressure amplitudes obtained by downstream forcing will likely overestimate 
those seen in full scale combustors. This provides disturbance amplification that will be easier to 
measure in unielement combustors and also implies that they will provide conservative scaling 
as compared to full-scale applications. The process is, however, complex and other factors will 
most certainly be present. We also note that there is a considerable downward shift in the 
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Figure 5. Frequency response of longitudinal chamber for four mean flow Mach numbers: 0.05, 
0.1, 0.3, and 0.5, showing comparison between exact analyticalsolution and numerical simulations. 
Downstream forcing with upstream mass flux fixed. 

frequency of both the first and second modes as the Mach number is increased. At a mean flow 
Mach number of 0.05, the first longitudinal mode is very close to the classical result for acoustic 
modes in a quiescent medium. As the Mach number is increased to 0.5, this first mode frequency 
is decreased by nearly 50%. Larger Mach numbers also increase the width of the ‘resonant’ 
peaks. This change in resonant-mode frequency with Mach number is the result of u+c and LJ-C 
effects. Finally, we note that the shape of the frequency response curves changes substantially 
as the Mach number is increased. At low Mach numbers, the response is sharply peaked and 
narrow akin to behavior observed in quiescent environments, but at higher Mach numbers, the 
peaks are much more rounded and gentle so the distinction between off-resonance and 01)- 

resonance is much smaller. Again, note that these observations are for longitudinal modes. 

In terms of the comparison between numerical and analytical results, we note that the 
numerical comparison for the lowest Mach number case in Fig. 5 exhibits larger errors for the 
higher frequencies. These errors are a direct result of the slow convergence to a stationary 
iteration demonstrated above and inspection of these simtilations show they have not quite 
reached stationarity. In addition to this low frequency error the highest Mach number case (0.5) 
begins to show significant dispersion errors at the highest frequencies. This the result of phase 
errors in the computation and can be removed by additional grids as noted later. 

The A key parameter in unsteady flow solutions is the degree of grid resolution. 
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representative parameter is points-per-wavelength (ppw), but since the wavelength in these 
computations gets consistently shorter as the frequency is increased, we present a grid 
refinement study in terms of the number of grids along the length of the combustor. The results 
are shown in Fig. 6 for grids of 20, 40 and 80 points in the longitudinal direction. The 20 grid 
point results correspond to approximately 40 points per wavelength at the fundamental frequency 
of the chamber and to correspondingly fewer ppw as the frequency is increased. The comparison 
of accuracy with frequency clearly shows these trends. Numerical results are compared with the 
exact solution for each of 32 frequencies over a range similar to that used in Fig. 5 above for the 
M = 0.3 case. For the 20 grid point case, the accuracy of the numerical solution remains good for 
the first mode, but as the second mode is approached, the errors begin to grow and the 
predictions become increasingly poorer. In addition, the amplitude of the second mode is 
considerably under predicted on this coarse grid. For the 40 and 80 grid-point cases, the 
numerical results remain very similar to each other and show good agreement with the exact 
solution to the highest frequencies shown. There is noticeable dispersion error at the highest 
frequencies on all grids, although the finest grid is the best and the coarsest is Worst. In all 
cases, the temporal resolution was 100 points per period. All computations above were run on 
the finest grid. 

inflow boundary. As an assessment of the 
sensitivity to upstream conditions, we also 
present in Fig. 7 a set of results for simulations 
in which the upstream stagnation pressure 
was held fixed. For this computation, we show 
only the numerical solutions, and give results 
for mean flow Mach numbers of 0.1, 0.3 and 
0.5. In all cases the response is quantitatively 
different than when the mass flux was held 
fixed. but are aualitativelv analogous (compare 

Grid Size Comparison - M ~ 0 . 3  

T RAN SV E RS E COM B U STO R SI MU LATl ONS 

The transverse mode computations are for a two- 
dimensional chamber that simulates a rectangular 
experimental concept [I]. For this case we use a 
constant area duct for analytical and computational 
simulations and chambers with one, two, four and 
eight nozzles for the simulations. The simulations 
are for a chamber width of 8" and a length of 3.2". 
The predictions are for non-uniform upstream mass 
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Fig. 7 with Fig. 5). Again the trend is toward 
lower frequencies for higher Mach numbers, 
but the trend appears slightly more 
pronounced. A major difference is that the 

Figure 6. Grid refinement study for 
longitudinal oscillations and comparison 
with annlvticnl sollitinn. 

stagnation pressure boundary condition 
produces a significant change in the resonant frequencies and allow damped osillations at the 
upstream end. 
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The results in Fig. 8 are for two mean flow Mach numbers, M = 0.1 and M = 0.3 and 
obtained from numerical simulations. A series of grid resolutions were again computed but are 
omitted here for brevity. The upstream forcing was done by varying the stagnation pressure in 
asymmetric fashion to generate transverse disturbances. Response were calculated for a total of 
24 modes. The pressure response is reported at the top of the chamber half way between the 
inlet and exit planes. Again the results show a substantial dependence upon the mean flow Mach 
number with the higher value producing more nearly uniform response with frequency. mid-point 
of the chamber results shown are 
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i- Figure 8. Frequency response for 
transverse mode chamber. Mean flow 
Mach numbers 0.1 and 0.3. Numerical 1 cimi ilatinn 

A series of transverse mode 
calculations have also been computed in the 
presence of multiple nozzles using upstream 
forcing. The geometric configurations with a 
single nozzle and four nozzles are given in 
Fig. 1 above. An eight-nozzle configuration is 
given in Fig. 9 below. Time-variations of the 
flow in these multiple nozzle cases are similar 
to those for the constant area duct although 
the presence of the convergence has a minor 
effect. Mean flow variations in these 
computations were obtained by varying the 
nozzle area for choked flow conditions. 

Finally we note that a series of 
computations for the effects of nozzles on the 
longitudinal chamber has also been computed 
to ascertain the effects of a finite length nozzle 

on the modes and also to assess any possible difference from conventional and 'inverted' 
nozzles. Geometries for these cases are given in Fig. 2. The inverted nozzles are if interest for 
experimental investigation of chambers whose length can be varied during a run. The results 
show that the conventional and inverted nozzles give nearly identical results for the same area 
ratio. 

i SUMMARY AND CONCLUSIONS 

1 
Computational simulations have been used in conjunction 

with closed-form analytical solutions to study the acoustic 
characteristics of laboratory scale combustion chambers. TWO 
geometrical configurations have been addressed, a long chamber 
that responds to longitudinal modes and a wide, two-dimensional 
chamber that responds to transverse modes. The longitudinal 
chamber represents a potential screening mechanism for the relative 
stability characteristics of candidate injector elements under the 
supposition that elements susceptible to longitudinal modes will 
likewise be sensitive to transverse modes The transverse wave 
geometry is intended to provide a more direct representation of 

verify its effectiveness. 

$: rocket instabilities and to complement the longitudinal screening and - 
The closed-form analytical results are used for 

global topographical characteristics of the instability surfaces 
the first step in verifyrng the numerical simulations. 
analytical guide, computational simulations are highly ineffective 
because hundreds or thousands of simulations are needed to map out the stability characteristics 
of a given injectorkhamber combination. Exact analytical solutions provide precise InfOrmatlOn 
on modes shapes, amplitudes and phase relationships that can accurately verify that the 
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numerical simulation provides the proper solutiion to the proposed model. Experimental 
validation is then needed to evaluate the model itself, not its numerical implementation. 

A key issue in uni-element ?esting is ?ha? the mean flow Mach number is generally 
considerably lower than in the engine, and an initial focus of the present results is to assess how 
this Mach number scaling affects the stability results. The present results indicate that as the 
mean Mach number in the chamber is increased, the response to both longitudinal and 
transverse forcing weakens while the resonant modes decrease in frequency. Large mean flow 
Mach numbers also lead to broader peaks in response. The results provide a useful means for 
scaling mean flow Mach number effects in uni-element tests for realistic engine Mach numbers. 

The comparisons between analytical and numerical simulations demonstrate that grid 
resolution that provides from 40 to 80 points per wave can with secondader schemes can 
produce simulations with errors of less than 1% in amplitude and phase. Numerical simulations 
for transverse waves in two-dimensional chambers show qualitatively similar results to solutions 
for the simple constant area geometries used in the analytical results. Estimates of the effect of 
nozzle length on response are in progress. 
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